Identification with iterative nearest neighbors using domain knowledge

نویسندگان

  • David Grosser
  • Noël Conruyt
  • Henri Ralambondrainy
چکیده

A new iterative and interactive algorithm called CSN (Classification by Successive Neighborhood) to be used in a complex descriptive objects identification approach is presented. Complex objects are those designed by experts within a knowledge base to describe taxa (monography species) and also real organisms (collection specimens). The algorithm consists of neighborhoods computations from an incremental basis of characters using a dissimilarity function which takes into account structures and values of the objects. A discriminant power function is combined with domain knowledge on the features set at each iteration. It is shown that CSN consistently outperforms methods such as identification trees and simplifies interactive classification processes comparatively to search for K-Nearest-Neighbors method. Index Terms — identification, Similarity, K-Nearest-Neighbors, Decision Trees, structured data, knowledge base, life science. —————————— u ——————————

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iterative Nearest Neighbors

Representing data as a linear combination of a set of selected known samples is of interest for various machine learning applications such as dimensionality reduction or classification. k-Nearest Neighbors (kNN) and its variants are still among the best-known and most often used techniques. Some popular richer representations are Sparse Representation (SR) based on solving an l1-regularized lea...

متن کامل

kNN-IS: An Iterative Spark-based design of the k-Nearest Neighbors classifier for big data

The k-Nearest Neighbors classifier is a simple yet effective widely renowned method in data mining. The actual application of this model in the big data domain is not feasible due to time and memory restrictions. Several distributed alternatives based on MapReduce have been proposed to enable this method to handle large-scale data. However, their performance can be further improved with new des...

متن کامل

A Novel Hybrid Approach for Email Spam Detection based on Scatter Search Algorithm and K-Nearest Neighbors

Because cyberspace and Internet predominate in the life of users, in addition to business opportunities and time reductions, threats like information theft, penetration into systems, etc. are included in the field of hardware and software. Security is the top priority to prevent a cyber-attack that users should initially be detecting the type of attacks because virtual environments are not moni...

متن کامل

Kernel-Based Transductive Learning with Nearest Neighbors

In the k-nearest neighbor (KNN) classifier, nearest neighbors involve only labeled data. That makes it inappropriate for the data set that includes very few labeled data. In this paper, we aim to solve the classification problem by applying transduction to the KNN algorithm. We consider two groups of nearest neighbors for each data point — one from labeled data, and the other from unlabeled dat...

متن کامل

Iterative learning identification and control for dynamic systems described by NARMAX model

A new iterative learning controller is proposed for a general unknown discrete time-varying nonlinear non-affine system represented by NARMAX (Nonlinear Autoregressive Moving Average with eXogenous inputs) model. The proposed controller is composed of an iterative learning neural identifier and an iterative learning controller. Iterative learning control and iterative learning identification ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010